

BoostAL[™] for Ladle Heating

Looking to:

- Bring down atmospheric emissions?
- Reduce your carbon footprint?
- Increase your production rate?

Liquid metal transport ladles is preheated to:

- Minimize thermal shock when pouring molten metal;
- Prevent damaging the refractory lining;
- Reduce temperature drops of the metal in the ladle.

Ladle preheating is generally done using air combustion while limited to a maximum metal temperature of 1000°C and very fuel intensive.

BoostALTM **Ladle Heating** is the Air Liquide complete offer for ladle preheating in steel mills and foundries.

We offer an advanced oxy-fuel technology which, thanks to a high radiative oxygen/fuel combustion, accelerates the heating and at the same time cleans the ladles from oxides accumulated on the refractory surface. This technology accelerates the heating of the refractory to a temperature (defined by the customer) that avoids overheating the metal at the furnace exit.

Moreover, by eliminating nitrogen in the oxidant, the ${\rm NO_x}$ formation is drastically reduced.

Applicable Industries

Steelmaking, cast iron and non-ferrous foundries.

Environmental benefits

Up to $60\% \, \mathrm{CO_2}$ saving. Up to 70% fuel saving.

Operational benefits

Production rate increase:

Heat-up times divided by 4;

More uptime.

Better quality of metal by eliminating thermal stratification in ladles.

Lifetime increase of the refractory lining.

Case Study #1: 130t Ladle Stainless Steel

Customer requirement

Reducing atmospheric emissions and carbon footprint

Solution

Oxygen combustion with oxy-fuel burner (1.5MW)

Benefits

52% fuel savings/cycle* 2850 m³ -> 1366 m³

1 cycle -> Heat-up time : 8 hours

52% less CO₂ emissions/cycle 5700 kg -> 2732 kg

December 2021 - Photos credits: Air Liquide, Getty Image

Study #2: 40t Ladle

Carbon Steel

Customer requirement

Increasing production rate and improving metal quality

Solution

Oxygen combustion with oxy-fuel burner (1.5MW)

Benefits

Heat-up times reduce 3 hours -> 2 hours 40% fuel saving 875 m³ -> 350 m³

- Improvement of metal quality by eliminating thermal stratification in ladles.
- 100°C metal temperature increase (1100°C -> 1200 °C).

What We Offer:

- Low-Carbon Oxygen Supply in liquid storage.
- Combustion Equipment

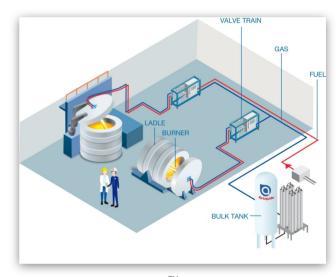
The **FLAMOXAL-B** is an automated valve train for controlling oxy-fuel burners and their gas supply.

OXYGEN INJECTION TECHNOLOGY

Patented burner

The ALJET LH burner is an oxy-fuel burner especially designed for drying and heating of ladles. It is suitable to severe working conditions as confined or overheated areas. An ignition pilot burner and a flame supervision cell can be integrated into the burner body. The burner configuration is of pipe-in-pipe type with the fuel pipe located inside the oxygen pipe. Fuel and oxygen together mix at the burner outlet and the flame develops in the ladle.

The **ALJET LH** burner is available in two standard models: the **ALJET 1500 LH** and **ALJET 750 LH** burners.


Expertise

Based on your specifications, our experts design the best **BoostAL**TM **Ladle Heating** technology.

They provide you with full support all along your project:

- from the preliminary and detailed design of the suitable oxy-fuel solution to your project;
- the installation, start-up and commissioning of combustion equipment;
- and for the optimization of operating process parameters.

Our experts are also available to help you with your risk analysis if necessary.

Process Diagram for BoostAL™ Ladle Heating

Related Offers

- BoostALTM for Non-Ferrous
- \bullet BoostAL $^{\text{TM}}$ COntrol for Non-Ferrous

