

Savez-vous comment préserver la qualité de votre gaz de la bouteille jusqu'à l'analyseur?

03 Novembre 2020 Frédéric Debusschere Frédéric Houze

THIS DOCUMENT IS PUBLIC

Novembre 2020 Air Liquide Group

Webinaire - Quelques règles

- Merci de :
 - → couper votre caméra (meilleure connexion)
 - → couper votre micro lorsque vous n' interagissez pas

Chat

- Pour toutes questions, remarques ou émotions (emoji) :
 - → utiliser le tchat

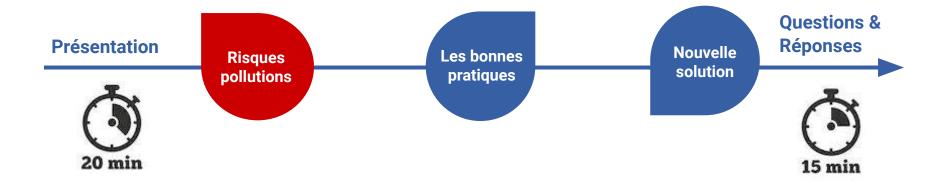
Sondage

- Pour répondre aux questions du sondage :
 - → Utiliser activités

• Notre webinaire est enregistré.

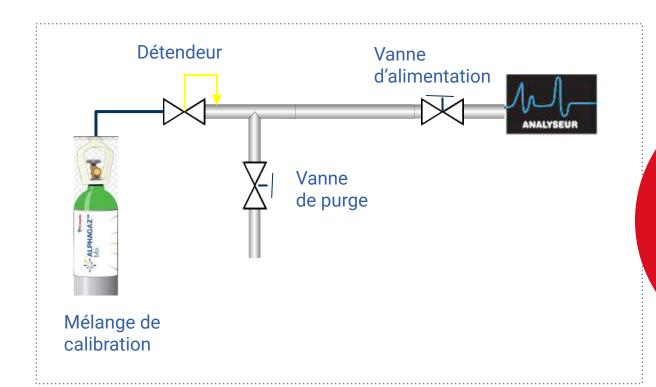
HIS DOCUMENT IS PUBLIC

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH


Novembre 2020

Group presentation

Sommaire


Les risques de pollution

THIS DOCUMENT IS DURING

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Conserver la qualité de mon gaz jusqu'à l'analyseur

EST ESSENTIELLE

POUR MAINTENIR SA QUALITÉ

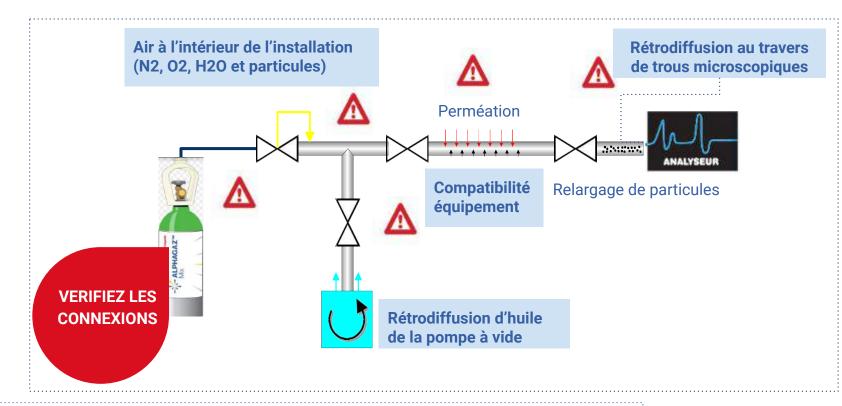
JUSQU'AU POINT D'UTILISATION

(ANALYSEUR)

EN UTILISATION FIXE OU

ITINÉRANTE.

Risques pollutions


Les 3 principales causes de contamination

- Manque d'étanchéité
- Pollution
- Interactions gaz paroi

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Manque d'étanchéité

Pollution

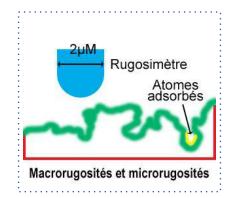
Impact sur la Qualité

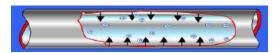
Les polluants atmosphériques pénètrent les tuyauteries en caoutchouc ou le silicone, des hydrocarbures peuvent être libérés par les matériaux, ...

Cas d'une contamination par l'oxygène de l'air d'une tuyauterie sous argon (débit 5 l/h, pression 10 bar, longueur 1m, diamètre 6mm)

Nature du matériau	Valeur indicative d'oxygène en ppm							
Mylar	0,02							
Nylon 6	0,05							
PTFCE	0,6							
Perbunan	5,3							
Néoprène	6,9							
Polyéthylène	11							
PTFE	13							
Polyvinyle	27							
Caoutchouc naturel	40							
Acier inoxydable	0							

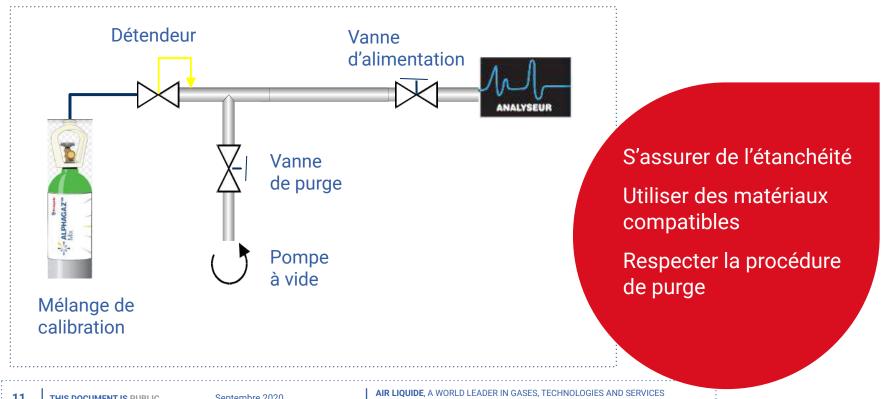
Interactions gaz-paroi


Impact sur la Sécurité


Possibilité de réaction entre O2 et gaz inflammables Corrosion de parties métalliques

Impact sur la Qualité

Possibilité de réaction entre humidité, 02 et des composants du mélange Modification des concentrations (ex. H2S, NO, NO2...)



Contamination
Oxygène, humidité, poussière...
Réactions chimiques

Système de transfert

Compatibilité matériaux

Tableau 1 — Compatibilité des matériaux

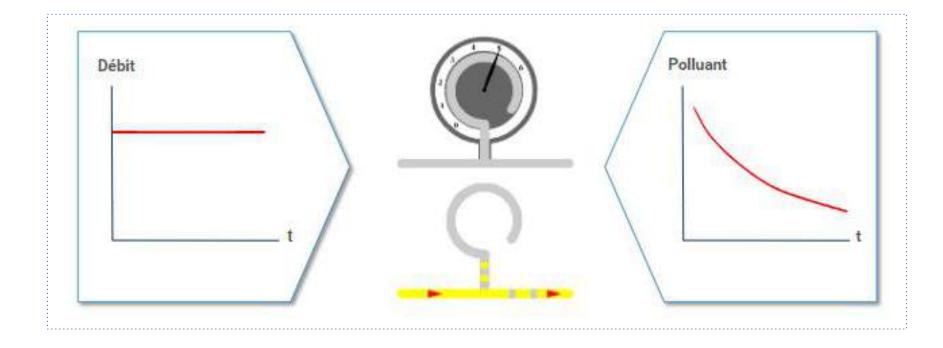
Gaz															Mate	riau														
	Acier inoxydable			Cuivre/ laiton			Hastelloy ^f / monelg/ nickel			Aluminium			Polytétra- fluoréthène (PTFE)			Polyéther- éther- cétone			Polyéther- éther- cétone, revêtu de silice			Verre/ quartz			Fluoroéthy- lène-propy- lène (FEP)			Acier inoxydable revêtu de silice		
	b	С	d	b	c	d	b	С	d	b	с	d	b	c	d	b	с	d	b	С	d	b	c	d	b	С	d	b	C	d
Gaz inerte	+	+	+	+	+	+	+	+	+	+	+	+	+	0*	97.0	+	+	0	+	+	+	+	+	+	+	+	+	+	+	+
02	+	+	+	+	+	+	+	+	+	+	+	+	+	0	-	+	+	0	+	+	+	*	+	*	+	+	0	+	+	+
CO ₂	+	+	+	*	+	+	+	+	+	+	+	+	+	+	0	0	0	75	+	+	+	+	+	+	+	+	+	+	+	+
CO	0	+	+	+	+	+	***	+	+	+	+	+	+	+	0	+	4	+	+	*	+	*	+	+	+	+	+	+	+	+
Alcane	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0	+	+	0	+	+	+	+	+	+	+	+	+	+	+	+
Alcène	+	+	+	+	+	0	+	+	+	+	+	+	+	0	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Aromatique	+	+	+	873	7.0	9:55	+	+	+	+	+	+	+	0	-	+	+	+	+	+	+	+	+	+	+	+	0	+	+	+
NO	+	+	+	+	+	+	+	+	+	+	+	+	o	0	0	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NO ₂	+	+	+	-	-50	7.2%	+	+	+	0	***	***	0	0	0	***	+	+	***	***	***	+	+	+	0	0	0	+	+	+
Cl ₂	0	0	0	+	+	+	+	+	+	***	***	***	+	+	+	+	+	+	+	***	***	+	+	+	+	+	+	+	+	+
HCl	0**	0.**	0 **	0	0	0	+	+	+	Ŧ.	-	0**	+	+	-	***	***	***	***	***	***	+	+	+	+	+	+	+	+	+
NH ₃	+	+	+	32	-	-	+	+	+	***	***	***	-	2	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Extrait de la norme NF EN ISO 16664

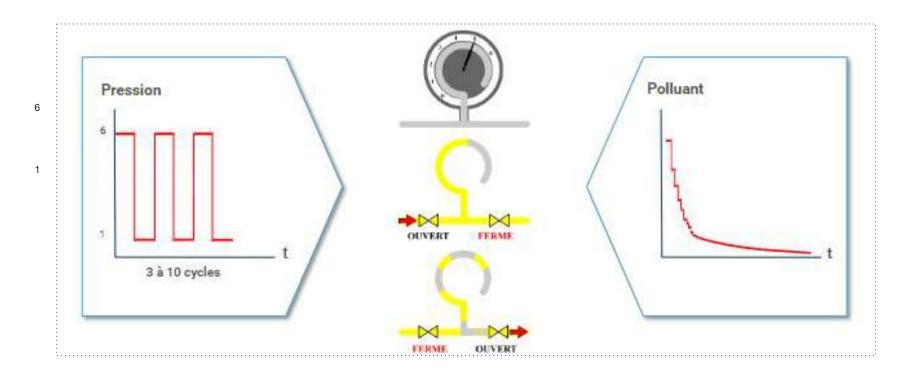
ISO 16664 / Analyse des gaz — Mise en oeuvre des gaz et des mélanges de gaz pour étalonnage

Les **détendeurs** : principaux composants

Manomètre BP

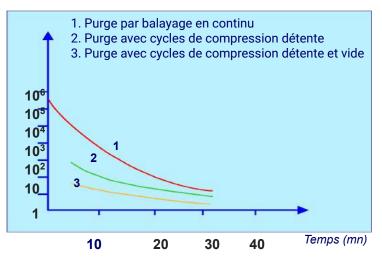


Manomètre HP


Vanne de régulation de pression de sortie

Raccord de sortie

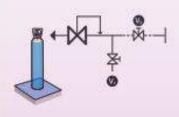
Méthodes de purge : le balayage continu


Méthode de purges : cycles de compression détente

Comparaison des différentes méthodes de purge

Exemple: on passe de 100% à 1 ppm grâce à 8 cycles de 6 à 1 bar.

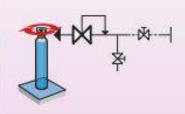
Contaminant concentration (ppm)



Recommandation: Cycles de purge par compression détente

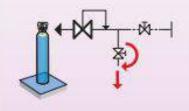
PHASE 1

Installation


Monter le détendeur sur la bouteille. Vérifier que le détendeur est OUVERT et que les vannes de mise à l'air (V1) et d'utilisation (V2) sont FERMÉES.

PHASE 2

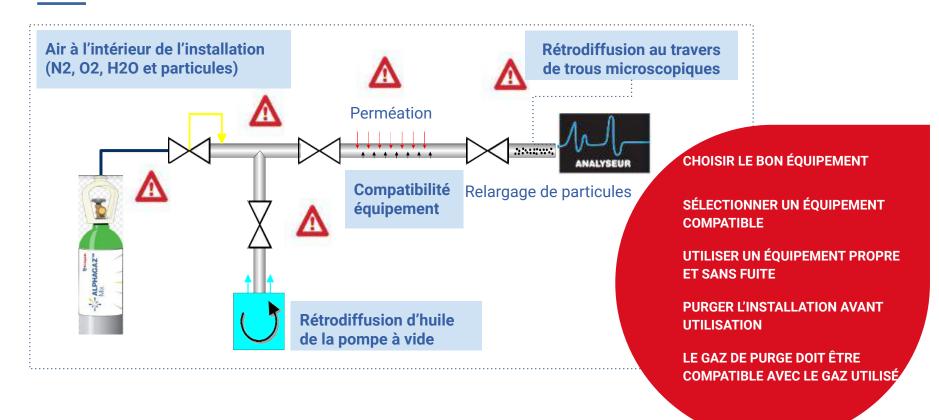
Mise sous pression : compression


Ouvrir légèrement le robinet de la bouteille et le refermer aussitôt. Attendre environ 1 minute.

PHASE 3

Détente à l'atmosphère

Ouvrir la vanne de mise à l'air pour chasser le mélange gazair. Refermer la vanne lorsque la pression atmosphérique est atteinte.



PHASE 4

Renouvellement de l'opération

Répéter plusieurs cycles de compression-détente (phases 2 et 3) afin d'éliminer la contamination par l'air dans l'installation (voir schéma ci-dessous).

RAPPEL des bonnes pratiques

1 AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

19 Novembre 2020 Group presentation

Innovation LABTOP™: **Nouvelle génération de**

bouteille avec détendeur- intégré

LABTOP™: une qualité améliorée

Vanne anti-retour

Prévient tout risque de contamination par rétrodiffusion.

Pression d'utilisation stable

Plus de qualité et de précision de votre calibration grâce à une double détente.

Le détendeur est sous atmosphère contrôlée en permanence et ne nécessite pas de purge

Brevet Air Liquide:
les deux vannes
HP et BP
sont actionnées en
une seule
manipulation

LABTOP™: une sécurité renforcée

Arrêt immédiat de l'arrivée de gaz.

Aucune exposition à la haute pression.

Risque significativement réduit de fuite et d'intoxication.

Protection permanente et fiable du robinet-détendeur.

LABTOP™: une ergonomie retrouvée

Jauge de pression

Visualisation de la pression de travail et de la quantité de gaz résiduel dans la bouteille.

Accès immédiat à toutes les fonctions et statut ouvert/fermé en un coup d'oeil.

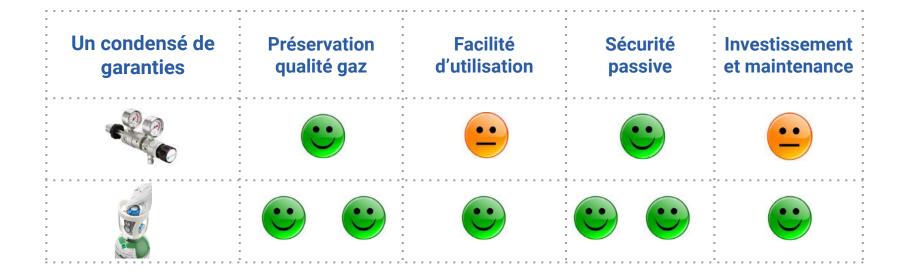
Sûr de toujours avoir le bon détendeur.

LABTOP™: des économies à la clé

Economisez du gaz

- Fini les fuites
- Plus besoin de purger le détendeur

Plus de budget équipement


- Plus besoin d'acheter ou de remplacer le détendeur
- Air Liquide gère toutes les opérations de maintenance

Gagnez du temps

- Bouteille prête à l'emploi
- Connexion rapide
- Affichage permanent du niveau de gaz résiduel

Innovation LABTOP™: un condensé de garanties

Pour en savoir plus :

frederic.debusschere@airliquide.com frederic.houze@airliquide.com

Session ouverte pour

Questions & Réponses...

